Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

  •  User stories documented (Albert/Alvin)
  •  User stories reviewed (Nitin)
  •  Design documented (Albert/Alvin)
  •  Design reviewed (Andreas/Terence)
  •  Feature merged (Albert/Alvin)
  •  Examples and guides (Albert/Alvin)
  •  Integration tests (Albert/Alvin) 
  •  Documentation for feature (Albert/Alvin)
  •  Blog post

...

The developer to load webpage click and view data (customer id, timestamp, action, url) into a partitioned fileset. After loading the data, the developer wants to de-duplicate records and calculate how many times each customer clicked and viewed over the past hour, past day, and past month. 

User Stories:

  1. (3.4) A developer should be able to create pipelines that contain aggregations (GROUP BY -> count/sum/unique)
  2. (3.5) A developer should be able to create a pipeline with multiple sources, with one happening after the otherA control some parts of the pipeline running before others. For example, one source -> sink branch running before another source -> sink branch.
  3. (3.4) A developer should be able to use a Spark ML job as a pipeline stage
  4. A (3.4) A developer should be able to rerun failed pipeline runs without reconfiguring the pipeline
  5. A (3.4) A developer should be able to de-duplicate records in a pipeline
  6. A developer should (3.5) A developer should be able to join multiple branches of a pipeline
  7. A (3.5) A developer should be able to use an Explore action as a pipeline stage
  8. A (3.5) A developer should be able to create pipelines that contain Spark Streaming jobs
  9. A (3.5) A developer should be able to create pipelines that run based on various conditions, including input data availability and Kafka events

Design:

Story 1: Group By -> Aggregations

Option 1:

Introduce a new plugin type "aggregationaggregator".  In general, to support more and more plugin types in a generic way, we want to refactor the config:

Code Block
Option 1:
{
  "stages": [
    {
      "name": "inputTable",
      "plugin": {
        "name": "Table",
        "type": "batchsource",  // new field
        "properties": {
        }
      }
    },
    {
      "name": "aggStage",
      "plugin": {
        "name": "RecordAggregatorGroupByAggregate",
        "type": "aggregationaggregator",  // new plugin type
        "properties": {
          "groupBy": "id",
          "functions": "{[
            {
"totalPrice": {               "namecolumnName": "sumtotalPrice",
              "propertiesplugin": {
                "columnname": "pricesum"
,
             }       "properties": {
     },             "numTransactionscolumn": {
"price"
             "name": "count"  }
          }    }
      }"      },
  }       }   {
 }   ],   "connections": [     { "fromcolumnName": "inputTablenumTransactions",
"to": "aggStage" }       ] }   Option 2: {   "sourcesplugin": {
    [     {       "name": "inputTablecount",
 
    "plugin": {         "name": "Table",}
         "type": "batchsource",  //}
new field         "properties]":
{         }
      }
    }
  ],
  "aggregationsconnections": [
    {
      "namefrom": "aggStageinputTable",       "groupBy"to": "idaggStage", 
     "aggregations": [
        {
          "columnName": "totalPrice",
          "plugin": {
            "name": "sum",
            "properties": {
              "column": "price"
            }
          }
        },
        {
          "columnName": "numTransactions",
          "plugin":]
}

Some problems with this is that the plugin property "functions" is itself a json describing plugins to use.  This is not easy for somebody to configure, but maybe it could be simplified by a UI widget type.

 

Java APIs for plugin developers.  It is basically mapreduce, 'Aggregation' is probably a bad name for this.  Need to see if this fits into Spark.  Would we have to remove the emitters?

Code Block
public abstract class Aggregation<GROUP_BY, RECORD_TYPE, OUTPUT_TYPE> {
 
  public abstract void groupBy(RECORD_TYPE     "name": "count"
          }
        }
      ]
    }
  ],
  "connections": [
    { "from": "inputTable", "to": "aggStage" } 
  ]
}
 
public abstract class Aggregation<INPUT_TYPE, GROUP_BY, RECORD_TYPE, OUTPUT_TYPE> {
 
  public abstract groupBy(INPUT_TYPE input, Emitter<KeyValue<GROUP_BY, RECORD_TYPE>> emitter);
 
  public abstract aggregate(GROUP_BY groupKey, Iterable<RECORD_TYPE> groupRecords, Emitter<OUTPUT_TYPE> emitter);
 
}

@Plugin(type = "aggregation")
@Name("record")
public RecordAggregation extends Aggregation<StructuredRecord, StructuredRecord, StructuredRecord, StructuredRecord> {
  private static final AggConfig config;
  
  public static class AggConfig extends PluginConfig {
    private String groupBy;
 
    // ideally this would be Map<String, FunctionConfig> functions
    private String functions;
  }
 
  public void configurePipeline(PipelineConfigurer configurer) {
    Map<String, FunctionConfig> functions = gson.fromJson(config.functions, MAP_TYPE);
    for each function:
      usePlugin(id, type, name, properties);
  }
 
  public groupBy(StructuredRecord input, Emitter<KeyValue<StructuredRecord, StructuredRecord>> emitterinput, Emitter<GROUP_BY> emitter);
 
  public abstract void aggregate(GROUP_BY groupKey, Iterable<RECORD_TYPE> groupRecords, Emitter<OUTPUT_TYPE> emitter);
 
}

@Plugin(type = "aggregation")
@Name("GroupByAggregate")
public GroupByAggregate extends Aggregation<StructuredRecord, StructuredRecord, StructuredRecord> {
  private static final AggConfig config;
  
  public static class AggConfig extends PluginConfig {
    private String groupBy;
 
    // ideally this would be Map<String, FunctionConfig> functions
    private String functions;
  }
 
  public void configurePipeline(PipelineConfigurer configurer) {
    Map<String, FunctionConfig> functions = gson.fromJson(config.functions, MAP_TYPE);
    for each function:
      usePlugin(id, type, name, properties);
  }
 
  public groupBy(StructuredRecord input, Emitter<StructuredRecord> emitter) {
    // key = new record from input with only fields in config.groupBy
    Set<String> fields = config.groupBy.split(",");
    emitter.emit(recordSubset(input, fields));
  }
 
  public void initialize() {
    // key = new record from input with only fields in config.groupByMap<String, FunctionConfig> functions = gson.fromJson(config.functions, MAP_TYPE);
    for each function:
      val //= emitterfunction.emit(new KeyValue<>(key, input))aggregate(groupRecords);
  }
 
  public publicvoid aggregate(StructuredRecord groupKey, Iterable<StructuredRecord> groupRecords, Emitter<StructuredRecord> emitter) {
    Map<String,// FunctionConfig>reset functions = gson.fromJson(config.functions, MAP_TYPE);all functions
    for for(StructuredRecord eachrecord function:
      val = function.aggregate(groupRecords); {
    for (StructuredRecord recordforeach function:
groupRecords) {       function.update(record);
    }
    // build record from group key and function values
    for each function:
      val = function.aggregate();
    // emit record
  }
 
}
  
public abstract class AggregationFunction<RECORD_TYPE, OUTPUT_TYPE> {
 
  public abstract void reset();
  public abstract void update(RECORD_TYPE record);
  public abstract OUTPUT_TYPE aggregate();
}
  
@Plugin(type = "aggregationFunction")
@Name("sum")
public SumAggregation extends AggregationFunction<StructuredRecord, Number> {
  private final SumConfig config;
  private Number sum;
  
  public static class SumConfig extends PluginConfig {
    private String column;
  }
  
  public void update(StructuredRecord record) {
    // get type of config.column, initialize sum to right type based on that
    sum += (casted to correct thing) record.get(config.column);
  }
  
  public Number aggregate() {
    return sum;
  }
}
 

Note: This would also satisfy user story 5, where a unique can be implemented as a Aggregation plugin, where you group by the fields you want to unique, and ignore the Iterable<> in aggregate and just emit the group key.

Story 2:

...

Control Flow (Not Reviewed, WIP)

Option 1: Introduce different types of connections. One for data flow, one for control flow

...

Option2: Make it so that connections into certain plugin types imply control flow rather than data flow.  For example, introduce "condition" plugin type.  Connections into a condition imply control flow rather than data flow.  Similarly, connections into an "action" plugin type would imply control flow

Code Block
{
  "stages": [
    {
      "name": "customersTable",
      "plugin": {
        "name": "Database",
        "type": "batchsource", ...
      }
    },    
    {
      "name": "customersFiles",
      "plugin": {
        "name": "TPFSParquet",
        "type": "batchsink", ...
      }
    },
    {
      "name": "afterDump",
      "plugin": {
        "name": "AlwaysRun",
        "type": "condition"
      }
    },
    {
      "name": "purchasesTable",
      "plugin": {
        "name": "Database",
        "type": "batchsource"
      }
    },
    {
      "name": "purchasesFiles",
      "plugin": {
        "name": "TPFSParquet",
        "type": "batchsink", ...
      }
    },
  ],
  "connections": [
    { "from": "customersTable", "to": "customersFiles" },
    { "from": "customersFiles", "to": "afterDump" },
    { "from": "afterDump", "to": "purchasesTable" },
    { "from": "purchasesTable", "to": "purchasesFiles" }
  ]
}

...

Story 3: Spark ML in a pipeline

Add a plugin type "sparkMLsparksink" that is treated like a transform.  But instead of being a stage inside a mapper, it is a program in a workflow.  The application will create a transient dataset to act as the input into the program, or an explicit source can be givensink.  When present, a spark program will be used to read data, transform it, then send all transformed results to the sparksink plugin.

Code Block
{
  "stages": [
    {
      "name": "customersTable",
      "plugin": {
        "name": "Database",
        "type": "batchsource", ...
      }
    },    
    {
      "name": "categorizer",
      "plugin": {
        "name": "SVM",
        "type": "sparkMLsparksink", ...
      }
    },
    {
      "name": "models",
      "plugin": {
        "name": "Table",
        "type": "batchsink", ...
      }
    },
  ],
  "connections": [
    { "from": "customersTable", "to": "categorizer" },
    { "from": "categorizer", "to": "models" }
  ]
}

Story 6: Join (Not Reviewed, WIP)

Add a join plugin type.  Different implementations could be inner join, left outer join, etc.

...