...
- User stories documented (Albert/Alvin)
- User stories reviewed (Nitin)
- Design documented (Albert/Alvin)
- Design reviewed (Andreas/Terence)
- Feature merged (Albert/Alvin)
- Examples and guides (Albert/Alvin)
- Integration tests (Albert/Alvin)
- Documentation for feature (Albert/Alvin)
- Blog post
...
The developer to load webpage click and view data (customer id, timestamp, action, url) into a partitioned fileset. After loading the data, the developer wants to de-duplicate records and calculate how many times each customer clicked and viewed over the past hour, past day, and past month.
User Stories:
- (3.4) A developer should be able to create pipelines that contain aggregations (GROUP BY -> count/sum/unique)
- (3.5) A developer should be able to create a pipeline with multiple sources, with one happening after the otherA control some parts of the pipeline running before others. For example, one source -> sink branch running before another source -> sink branch.
- (3.4) A developer should be able to use a Spark ML job as a pipeline stage
- A (3.4) A developer should be able to rerun failed pipeline runs without reconfiguring the pipeline
- A (3.4) A developer should be able to de-duplicate records in a pipeline
- A developer should (3.5) A developer should be able to join multiple branches of a pipeline
- A (3.5) A developer should be able to use an Explore action as a pipeline stage
- A (3.5) A developer should be able to create pipelines that contain Spark Streaming jobs
- A (3.5) A developer should be able to create pipelines that run based on various conditions, including input data availability and Kafka events
Design:
Story 1: Group By -> Aggregations
Option 1:
Introduce a new plugin type "aggregationaggregator". In general, to support more and more plugin types in a generic way, we want to refactor the config:
Code Block |
---|
Option 1: { "stages": [ { "name": "inputTable", "plugin": { "name": "Table", "type": "batchsource", // new field "properties": { } } }, { "name": "aggStage", "plugin": { "name": "RecordAggregatorGroupByAggregate", "type": "aggregationaggregator", // new plugin type "properties": { "groupBy": "id", "functions": "{[ { "totalPrice": { "namecolumnName": "sumtotalPrice", "propertiesplugin": { "columnname": "pricesum" , } "properties": { }, "numTransactionscolumn": { "price" "name": "count" } } } }" }, } } { } ], "connections": [ { "fromcolumnName": "inputTablenumTransactions", "to": "aggStage" } ] } Option 2: { "sourcesplugin": { [ { "name": "inputTablecount", "plugin": { "name": "Table",} "type": "batchsource", //} new field "properties]": { } } } ], "aggregationsconnections": [ { "namefrom": "aggStageinputTable", "groupBy"to": "idaggStage", } "aggregations": [ { "columnName": "totalPrice", "plugin": { "name": "sum", "properties": { "column": "price" } } }, { "columnName": "numTransactions", "plugin": { "name": "count" } } ] } ], "connections": [ { "from": "inputTable", "to": "aggStage" } ] } public abstract class Aggregation<INPUT_TYPE, GROUP_BY, RECORD_TYPE, OUTPUT_TYPE> { public abstract groupBy(INPUT_TYPE input, Emitter<KeyValue<GROUP_BY, RECORD_TYPE>> emitter); public abstract aggregate(GROUP_BY groupKey, Iterable<RECORD_TYPE> groupRecords, Emitter<OUTPUT_TYPE> emitter); } @Plugin(type = "aggregation") @Name("record") public RecordAggregation extends Aggregation<StructuredRecord, StructuredRecord, StructuredRecord, StructuredRecord> { private static final AggConfig config; public static class AggConfig extends PluginConfig { private String groupBy; // ideally this would be Map<String, FunctionConfig> functions private String functions; } public void configurePipeline(PipelineConfigurer configurer] } |
Some problems with this is that the plugin property "functions" is itself a json describing plugins to use. This is not easy for somebody to configure, but maybe it could be simplified by a UI widget type.
Java APIs for plugin developers. It is basically mapreduce, 'Aggregation' is probably a bad name for this. Need to see if this fits into Spark. Would we have to remove the emitters?
Code Block |
---|
public abstract class Aggregation<GROUP_BY, RECORD_TYPE, OUTPUT_TYPE> { public abstract void groupBy(RECORD_TYPE input, Emitter<GROUP_BY> emitter); public abstract void aggregate(GROUP_BY groupKey, Iterable<RECORD_TYPE> groupRecords, Emitter<OUTPUT_TYPE> emitter); } @Plugin(type = "aggregation") @Name("GroupByAggregate") public GroupByAggregate extends Aggregation<StructuredRecord, StructuredRecord, StructuredRecord> { private static final AggConfig config; public static class AggConfig extends PluginConfig { private String groupBy; // ideally this would be Map<String, FunctionConfig> functions private String functions; } public void configurePipeline(PipelineConfigurer configurer) { Map<String, FunctionConfig> functions = gson.fromJson(config.functions, MAP_TYPE); for each function: usePlugin(id, type, name, properties); } public groupBy(StructuredRecord input, Emitter<StructuredRecord> emitter) { Map<String,// FunctionConfig>key functions= = gson.fromJson(config.functions, MAP_TYPE); for each function:new record from input with only fields in config.groupBy Set<String> fields = usePlugin(id, type, name, propertiesconfig.groupBy.split(","); emitter.emit(recordSubset(input, fields)); } public publicvoid groupByinitialize(StructuredRecord) input,{ Emitter<KeyValue<StructuredRecord, StructuredRecord>> emitter) { Map<String, FunctionConfig> functions // key = new record from input with only fields in config.groupBy= gson.fromJson(config.functions, MAP_TYPE); for each function: val //= emitterfunction.emit(new KeyValue<>(key, input))aggregate(groupRecords); } public void aggregate(StructuredRecord groupKey, Iterable<StructuredRecord> groupRecords, Emitter<StructuredRecord> emitter) { Map<String, FunctionConfig> functions = gson.fromJson(config.functions, MAP_TYPE);) { for each function:// reset all functions for (StructuredRecord valrecord =: function.aggregate(groupRecords); { for (StructuredRecord recordforeach function: groupRecords) { function.update(record); } // build record from group key and function values for each function: val = function.aggregate(); // emit record } } public abstract class AggregationFunction<RECORD_TYPE, OUTPUT_TYPE> { public abstract void reset(); public abstract void update(RECORD_TYPE record); public abstract OUTPUT_TYPE aggregate(); } @Plugin(type = "aggregationFunction") @Name("sum") public SumAggregation extends AggregationFunction<StructuredRecord, Number> { private final SumConfig config; private Number sum; public static class SumConfig extends PluginConfig { private String column; } public void update(StructuredRecord record) { // get type of config.column, initialize sum to right type based on that sum += record= (casted to correct thing) record.get(config.column); } public Number aggregate() { return sum; } } |
Note: This would also satisfy user story 5, where a unique can be implemented as a Aggregation plugin, where you group by the fields you want to unique, and ignore the Iterable<> in aggregate and just emit the group key.
Story 2:
...
Control Flow (Not Reviewed, WIP)
Option 1: Introduce different types of connections. One for data flow, one for control flow
...
Option2: Make it so that connections into certain plugin types imply control flow rather than data flow. For example, introduce "condition" plugin type. Connections into a condition imply control flow rather than data flow. Similarly, connections into an "action" plugin type would imply control flow
Code Block |
---|
{ "stages": [ { "name": "customersTable", "plugin": { "name": "Database", "type": "batchsource", ... } }, { "name": "customersFiles", "plugin": { "name": "TPFSParquet", "type": "batchsink", ... } }, { "name": "afterDump", "plugin": { "name": "AlwaysRun", "type": "condition" } }, { "name": "purchasesTable", "plugin": { "name": "Database", "type": "batchsource" } }, { "name": "purchasesFiles", "plugin": { "name": "TPFSParquet", "type": "batchsink", ... } }, ], "connections": [ { "from": "customersTable", "to": "customersFiles" }, { "from": "customersFiles", "to": "afterDump" }, { "from": "afterDump", "to": "purchasesTable" }, { "from": "purchasesTable", "to": "purchasesFiles" } ] } |
...
Story 3: Spark ML in a pipeline
Add a plugin type "sparkMLsparksink" that is treated like a transform. But instead of being a stage inside a mapper, it is a program in a workflow. The application will create a transient dataset to act as the input into the program, or an explicit source can be givensink. When present, a spark program will be used to read data, transform it, then send all transformed results to the sparksink plugin.
Code Block |
---|
{ "stages": [ { "name": "customersTable", "plugin": { "name": "Database", "type": "batchsource", ... } }, { "name": "categorizer", "plugin": { "name": "SVM", "type": "sparkMLsparksink", ... } }, { "name": "models", "plugin": { "name": "Table", "type": "batchsink", ... } }, ], "connections": [ { "from": "customersTable", "to": "categorizer" }, { "from": "categorizer", "to": "models" } ] } |
Story 6: Join (Not Reviewed, WIP)
Add a join plugin type. Different implementations could be inner join, left outer join, etc.
...
Java API for join plugin type: these might just be built into the app. Otherwise the interface is basically MapReduce.