...
- User stories documented (Albert/Alvin)
- User stories reviewed (Nitin)
- Design documented (Albert/Alvin)
- Design reviewed (Andreas/Terence)
- Feature merged (Albert/Alvin)
- Examples and guides (Albert/Alvin)
- Integration tests (Albert/Alvin)
- Documentation for feature (Albert/Alvin)
- Blog post
...
The developer to load webpage click and view data (customer id, timestamp, action, url) into a partitioned fileset. After loading the data, the developer wants to de-duplicate records and calculate how many times each customer clicked and viewed over the past hour, past day, and past month.
User Stories:
- (3.4) A developer should be able to create pipelines that contain aggregations (GROUP BY -> count/sum/unique)
- (3.5) A developer should be able to create a pipeline with multiple sourcesA control some parts of the pipeline running before others. For example, one source -> sink branch running before another source -> sink branch.
- (3.4) A developer should be able to use a Spark ML job as a pipeline stage
- A (3.4) A developer should be able to rerun failed pipeline runs without reconfiguring the pipeline
- A developer (3.4) A developer should be able to de-duplicate records in a pipeline
- (3.5) A developer should be able to join multiple branches of a pipeline
- A (3.5) A developer should be able to use an Explore action as a pipeline stage
- A (3.5) A developer should be able to create pipelines that contain Spark Streaming jobs
- A (3.5) A developer should be able to create pipelines that run based on various conditions, including input data availability and Kafka events
Design:
Story 1: Group By -> Aggregations
Option 1:
Introduce a new plugin type "aggregation"
...
aggregator". In general, to support more and more plugin types in a generic way, we want to refactor the config:
Code Block |
---|
{ "stages": [ { "name": "inputTable", "plugin": { "name": "Table", "type": "batchsource", // new field "properties": { } } }, { "name": "aggStage", "plugin": { "name": "RecordAggregatorGroupByAggregate", "type": "aggregationaggregator", // new plugin type "properties": { "groupBy": "id", "functions": "{[ "totalPrice": { "namecolumnName": "sumtotalPrice", "propertiesplugin": { "columnname": "pricesum", } "properties": { }, "numTransactionscolumn": {"price" "name": "count" } } } }" }, } } { } ], "connections": [ { "fromcolumnName": "inputTablenumTransactions", "to": "aggStage" } ] } Option 2: { "sourcesplugin": [{ { "name": "inputTablecount", "plugin": { } "name": "Table", "type": "batchsource", } // new field "properties": {]" } } } ], "aggregationsconnections": [ { "namefrom": "aggStageinputTable", "groupByto": "idaggStage", } "aggregations": { "totalPrice": { "plugin": { "name": "sum", "properties": { "column": "price"] } |
Some problems with this is that the plugin property "functions" is itself a json describing plugins to use. This is not easy for somebody to configure, but maybe it could be simplified by a UI widget type.
Java APIs for plugin developers. It is basically mapreduce, 'Aggregation' is probably a bad name for this. Need to see if this fits into Spark. Would we have to remove the emitters?
Code Block |
---|
public abstract class Aggregation<GROUP_BY, RECORD_TYPE, OUTPUT_TYPE> { public abstract void groupBy(RECORD_TYPE input, Emitter<GROUP_BY> emitter); public abstract void aggregate(GROUP_BY groupKey, Iterable<RECORD_TYPE> groupRecords, Emitter<OUTPUT_TYPE> emitter); } @Plugin(type = "aggregation") @Name("GroupByAggregate") public GroupByAggregate extends Aggregation<StructuredRecord, StructuredRecord, StructuredRecord> { private static final AggConfig config; public static class AggConfig extends PluginConfig { } private String groupBy; } // ideally this would be Map<String, FunctionConfig> },functions private String functions; } public void configurePipeline(PipelineConfigurer configurer) { Map<String, FunctionConfig> functions = "numTransactions": {gson.fromJson(config.functions, MAP_TYPE); for each "plugin": { function: usePlugin(id, type, name, properties); } public groupBy(StructuredRecord input, Emitter<StructuredRecord> emitter) { // key = new record from input with only fields in config.groupBy Set<String> fields = config.groupBy.split(","); emitter.emit(recordSubset(input, fields)); } public void initialize() { Map<String, FunctionConfig> functions = gson.fromJson(config.functions, MAP_TYPE); for each function: val = function.aggregate(groupRecords); } public void aggregate(StructuredRecord groupKey, Iterable<StructuredRecord> groupRecords, Emitter<StructuredRecord> emitter) { // reset all functions for (StructuredRecord record : groupRecords) { foreach function: function.update(record); } // build record from group key and function values for each function: val = function.aggregate(); // emit record } } public abstract class AggregationFunction<RECORD_TYPE, OUTPUT_TYPE> { public abstract void reset(); public abstract void update(RECORD_TYPE record); public abstract OUTPUT_TYPE aggregate(); } @Plugin(type = "aggregationFunction") @Name("sum") public SumAggregation extends AggregationFunction<StructuredRecord, Number> { private final SumConfig config; private Number sum; public static class SumConfig extends PluginConfig { private String column; } public void update(StructuredRecord record) { // get type of config.column, initialize sum to right type based on that sum += (casted to correct thing) record.get(config.column); } public Number aggregate() { return sum; } } |
Note: This would also satisfy user story 5, where a unique can be implemented as a Aggregation plugin, where you group by the fields you want to unique, and ignore the Iterable<> in aggregate and just emit the group key.
Story 2: Control Flow (Not Reviewed, WIP)
Option 1: Introduce different types of connections. One for data flow, one for control flow
Code Block |
---|
{
"stages": [
{
"name": "customersTable",
"plugin": {
"name": "Database",
"type": "batchsource", ...
}
},
{
"name": "customersFiles",
"plugin": {
"name": "TPFSParquet",
"type": "batchsink", ...
}
},
{
"name": "purchasesTable",
"plugin": {
"name": "Database",
"type": "batchsource"
}
},
{
"name": "purchasesFiles",
"plugin": {
"name": "TPFSParquet",
"type": "batchsink", ...
}
},
],
"connections": [
{ "from": "customersTable", "to": "customersFiles", "type": "data" },
{ "from": "customersFiles", "to": "purchasesTable", "type": "control" },
{ "from": "purchasesTable", "to": "purchasesFiles", "type": "data" }
]
} |
An alternative could be to introduce the concept of "phases", with connections between phases always control flow, and connections within phases as data flow
Code Block |
---|
{
"phases": [
{
"name": "phase1",
"stages": [
{
"name": "customersTable",
"plugin": {
"name": "Database",
"type": "batchsource", ...
}
},
{
"name": "customersFiles",
"plugin": {
"name": "TPFSParquet",
"type": "batchsink", ...
}
],
"connections": [
{ "from": "customersTable", "to": "customersFiles" }
]
},
{
"name": "phase2",
"stages": [
{
"name": "purchasesTable",
"plugin": {
"name": "Database",
"type": "batchsource"
}
},
{
"name": "purchasesFiles",
"plugin": {
"name": "TPFSParquet",
"type": "batchsink", ...
}
}
],
"connections": [
{ "from": "purchasesTable", "to": "purchasesFiles" }
]
}
]
"connections": [
{ "from": "phase1", "to": "phase2" }
]
} |
Option2: Make it so that connections into certain plugin types imply control flow rather than data flow. For example, introduce "condition" plugin type. Connections into a condition imply control flow rather than data flow. Similarly, connections into an "action" plugin type would imply control flow
Code Block |
---|
{
"stages": [
{
"name": "customersTable",
"plugin": {
"name": "Database",
"type": "batchsource", ...
}
},
{
"name": "customersFiles",
"plugin": {
"name": "TPFSParquet",
"type": "batchsink", ...
}
},
{
"name": "afterDump",
"plugin": {
"name": "AlwaysRun",
"type": "condition"
}
},
{
"name": "purchasesTable",
"plugin": {
"name": "Database",
"type": "batchsource"
}
},
{
"name": "purchasesFiles",
"plugin": {
"name": "TPFSParquet",
"type": "batchsink", ...
}
},
],
"connections": [
{ "from": "customersTable", "to": "customersFiles" },
{ "from": "customersFiles", "to": "afterDump" },
{ "from": "afterDump", "to": "purchasesTable" },
{ "from": "purchasesTable", "to": "purchasesFiles" }
]
} |
You could also say that connections into a source imply control flow, or connections into an action imply control flow.
Story 3: Spark ML in a pipeline
Add a plugin type "sparksink" that is treated like a sink. When present, a spark program will be used to read data, transform it, then send all transformed results to the sparksink plugin.
Code Block |
---|
{ "stages": [ { "name": "countcustomersTable", "plugin": { } } } } ], "connections": ["name": "Database", { "from": "inputTable", "totype": "aggStage"batchsource", ... } ] }, public abstract class Aggregation<INPUT_TYPE, GROUP_BY, RECORD_TYPE, OUTPUT_TYPE> { public abstract groupBy(INPUT_TYPE input, Emitter<KeyValue<GROUP_BY, RECORD_TYPE>> emitter); public abstract aggregate(GROUP_BY groupKey, Iterable<RECORD_TYPE> groupRecords, Emitter<OUTPUT_TYPE> emitter); } @Plugin(type = "aggregation") @Name("record") public RecordAggregation extends Aggregation<StructuredRecord, StructuredRecord, StructuredRecord, StructuredRecord> { private static final AggConfig config; public static class AggConfig extends PluginConfig { private String groupBy; // ideally this would be Map<String, FunctionConfig> functions private String functions; } public void configurePipeline(PipelineConfigurer configurer) { Map<String, FunctionConfig> functions = gson.fromJson(config.functions, MAP_TYPE); for each function: usePlugin(id, type, name, properties); } public groupBy(StructuredRecord input, Emitter<KeyValue<StructuredRecord, StructuredRecord>> emitter) { // key = new record from input with only fields in config.groupBy // emitter.emit(new KeyValue<>(key, input)); } public aggregate(StructuredRecord groupKey, Iterable<StructuredRecord> groupRecords, Emitter<StructuredRecord> emitter) { Map<String, FunctionConfig> functions = gson.fromJson(config.functions, MAP_TYPE); for each function: val = function.aggregate(groupRecords); for (StructuredRecord record : groupRecords) { function.update(record); } // build record from group key and function values for each function: val = function.aggregate(); // emit record } } public abstract class AggregationFunction<RECORD_TYPE, OUTPUT_TYPE> { public abstract void update(RECORD_TYPE record); public abstract OUTPUT_TYPE aggregate(); } @Plugin(type = "aggregationFunction") @Name("sum") public SumAggregation extends AggregationFunction<StructuredRecord, Number> { private final SumConfig config; private Number sum; public static class SumConfig extends PluginConfig { private String column; } public void update(StructuredRecord record) { // get type of config.column, initialize sum to right type based on that sum += record; } public Number aggregate() { return sum; } } |
...
"name": "categorizer",
"plugin": {
"name": "SVM",
"type": "sparksink", ...
}
},
{
"name": "models",
"plugin": {
"name": "Table",
"type": "batchsink", ...
}
},
],
"connections": [
{ "from": "customersTable", "to": "categorizer" }
]
} |
Story 6: Join (Not Reviewed, WIP)
Add a join plugin type. Different implementations could be inner join, left outer join, etc.
Code Block |
---|
{
"stages": [
{
"name": "customers",
"plugin": {
"name": "Table",
"type": "batchsource", ...
}
},
{
"name": "purchases",
"plugin": {
"name": "Table",
"type": "batchsource", ...
}
},
{
"name": "customerPurchaseJoin",
"plugin": {
"name": "inner",
"type": "join",
"properties": {
"left": "customers.id",
"right": "purchases.id",
"rename": "customers.name:customername,purchases.name:itemname"
}
}
},
...
],
"connections": [
{ "from": "customers", "to": "customerPurchaseJoin" },
{ "from": "purchases", "to": "customerPurchaseJoin" },
{ "from": "customerPurchaseJoin", "to": "sink" },
]
} |
Java API for join plugin type: these might just be built into the app. Otherwise the interface is basically MapReduce.