This document explains the design for storage and retrieval of the Field Level Lineage information.Example
Access Pattern:
...
In the lineage view, we show high level information first as shown below. Note that 'HR File', 'Person File', and 'Employee Data' are name of the input and output datasets, as indicated by the Reference name in the plugin properties.
Next detail level view contains the clickable fields from the input and output datasets. Note that 2D boxes represents fields belonging to the datasets. Since input datasets are of type file which does not have schema yet, plugin can provide any String name for it. In this case we are using "HR Record" and "Person Record" as name.
Once user clicks on particular field, field level lineage graph can be displayed.
Example: Graph for field ID, where circle represents the fields and edges represents operations with names in bubbles.
Note that "body" field is generated from "HR Record" as well as "Person Record". To distinguish it while storing we might need to prefix it with the stage name.
...
- For a given dataset, find out the high level lineage (field mapping between source and destination datasets and not the detail operations which caused this conversion) going in backward direction within a given time range. Note that the response should be multi-level. For example, consider a case where "Employee" dataset is generated from "Person", "HR", and "Skills" datasets. Response would contain the field mappings between source datasets ("Person", "HR", and "Skills") and "Employee" dataset. However it is also possible that the source datasets are created/updated in the given time range. So response should also include the field mappings between the datasets which created the source datasets and source datasets themselves.
- For a given dataset, find out the high level lineage (field mapping between source and destination datasets and not the detail operations which caused this conversion) going in forward direction within a given time range. Similar to the above query, response need to be multi-level.
- Given a dataset and field name, find out detail lineage (field mapping between the source and destination datasets along with the operations which caused this conversion) going in the backward direction. Response will only contain the operations belonging to the single level.
- Given a dataset and field name, find out detail lineage (field mapping between the source and destination datasets along with the operations which caused this conversion) going in the forward direction. Response will only contain the operations belonging to the single level.
REST API:
Given a dataset and time range, get the high level lineage both in forward and backward direction.
Code Block GET /v3/namespaces/<namespace-id>/endpoints/<endpoint-name>/fields/lineage?start=<start-ts>&end=<end-ts>&level=<level> Where: namespace-id: namespace name endpoint-name: name of the endpoint start-ts: starting timestamp(inclusive) in seconds end-ts: ending timestamp(exclusive) in seconds for lineage level: how many hops to make in backward/forward direction Sample response: [ ... list of lineage mappings ... ] where each lineage mapping will be of the form: { "source": { "namespace": "ns", "name": "Person" }, "Destination": { "namespace": "ns", "name": "Employee" }, "fieldmap": [ { "from": "id", "to": "id" }, { "from": "first_name", "to": "name"}, { "from": "last_name", "to": "name"} ] }
Given a dataset and field, find out the detailed lineage.
Code Block GET /v3/namespaces/<namespace-id>/endpoints/<endpoint-id>/fields/<field-name>/lineage?start=<start-ts>&end=<end-ts>&direction=<backward/forward> Where: namespace-id: namespace name endpoint-id: endpoint name field-name: name of the field for which lineage information to be retrieved start-ts: starting timestamp(inclusive) in seconds end-ts: ending timestamp(exclusive) in seconds for lineage direction: backward or forward Sample response: [ .... list of connections between fields .... ] where each connection is as follows: { "from": "id", "to": "id", "operation": { "name": "IDENTITY", "description": "operation description" }, }
Store:
Based on the above example, we want following pieces of information to be stored in the "FieldLevelLineage" dataset
...
Example: With one run of the pipeline shown above, following will be the sample data in the store.
Row Key | Column Key | Value | Note |
---|---|---|---|
MyNamespace:HRFile:<runidX-inverted-start-time>:runidX | Properties | inputDir=/data/2017/hr regex=*.csv failOnError=false | One Row per namespace per dataset per run |
MyNamespace: PersonFile:<runidX-inverted-start-time>:runidX | Properties | inputDir=/data/2017/person regex=*.csv failOnError=false | One Row per namespace per dataset per run |
MyNamespace:EmployeeData:<runidX-inverted-start-time>:runidX | Properties | rowid=ID /*should we store schema too? what if that changes per run?*/ | One Row per namespace per dataset per run |
MyNamespace:EmployeeData:AllFields:<runidX-inverted-start-time>:runidX | ID | /* We may not necessarily required to store any value*/ created_time:12345678 updated_time:12345678 last_updated_by:runid_X | One Row per namespace per dataset per run |
MyNamespace:EmployeeData:AllFields:<runidX-inverted-start-time>:runidX | Name |
MyNamespace:EmployeeData:AllFields:<runidX-inverted-start-time>:runidX | Department |
MyNamespace:EmployeeData:AllFields:<runidX-inverted-start-time>:runidX | ContactDetails |
MyNamespace:EmployeeData:AllFields:<runidX-inverted-start-time>:runidX | JoiningDate |
MyNamespace:EmployeeData:<runidX-inverted-start-time>:runidX | Lineage | JSON representation of the LineageGraph provided by app to the platform. |
One row per run per target dataset |
JSON stored for ID field:
Code Block |
---|
{ "sources": [ { "name": "PersonFile", "properties": { "inputPath": "/data/2017/persons", "regex": "*.csv" } }, { "name": "HRFile", "properties": { "inputPath": "/data/2017/hr", "regex": "*.csv" } } ], "targets": [ { "name": "Employee Data" } ], "operations": [ { "inputs": [ { "name": "PersonRecord", "properties": { "source": "PersonFile" } } ], "outputs": [ { "name": "body" } ], "name": "READ", "description": "Read Person file.", "properties": { "stage": "Person File Reader" } }, { "inputs": [ { "name": "body" } ], "outputs": [ { "name": "SSN" } ], "name": "PARSE", "description": "Parse the body field", "properties": { "stage": "Person File Parser" } }, { "inputs": [ { "name": "HRRecord", "properties": { "source": "HRFile" } } ], "outputs": [ { "name": "body" } ], "name": "READ", "description": "Read HR file.", "properties": { "stage": "HR File Reader" } }, { "inputs": [ { "name": "body" } ], "outputs": [ { "name": "Employee_Name" }, { "name": "Dept_Name" } ], "name": "PARSE", "description": "Parse the body field", "properties": { "stage": "HR File Parser" } }, { "inputs": [ { "name": "Employee_Name" }, { "name": "Dept_Name" }, { "name": "SSN" } ], "outputs": [ { "name": "ID", "properties": { "target": "Employee Data" } } ], "name": "GenerateID", "description": "Generate unique Employee Id", "properties": { "stage": "Field Normalizer" } } ] } |
...
Get the list of fields in the dataset.
Code Block GET /v3/namespaces/<namespace-id>/datasets/<dataset-id>/fields?start=<start-ts>&end=<end-ts> Where: namespace-id: namespace name dataset-id: dataset name start-ts: starting timestamp(inclusive) in seconds end-ts: ending timestamp(exclusive) in seconds for lineage Sample Response: [ { "name": "ID", "properties": { "creation_time": 12345678, "last_update_time": 12345688, "last_modified_run": "runid_x" } }, { "name": "name", "properties": { "creation_time": 12345678, "last_update_time": 12345688, "last_modified_run": "runid_x" } }, { "name": "Department", "properties": { "creation_time": 12345678, "last_update_time": 12345688, "last_modified_run": "runid_x" } }, { "name": "ContactDetails", "properties": { "creation_time": 12345678, "last_update_time": 12345688, "last_modified_run": "runid_x" } }, { "name": "JoiningDate", "properties": { "creation_time": 12345678, "last_update_time": 12345688, "last_modified_run": "runid_x" } } ]
Get the properties associated with the dataset.
Code Block GET /v3/namespaces/<namespace-id>/datasets/<dataset-id>/properties?start=<start-ts>&end=<end-ts> Where: namespace-id: namespace name dataset-id: dataset name start-ts: starting timestamp(inclusive) in seconds end-ts: ending timestamp(exclusive) in seconds for lineage Sample Response: [ { "programRun": "run1", "properties": { "inputPath": "/data/2017/hr", "regex": "*.csv" } }, { "programRun": "run2", "properties": { "inputPath": "/data/2017/anotherhrdata", "regex": "*.csv" } } ]
Get the lineage associated with the particular field in a dataset.
Code Block GET /v3/namespaces/<namespace-id>/datasets/<dataset-id>/fields/<field-name>/lineage?start=<start-ts>&end=<end-ts> Where: namespace-id: namespace name dataset-id: dataset name field-name: name of the field for which lineage information to be retrieved start-ts: starting timestamp(inclusive) in seconds end-ts: ending timestamp(exclusive) in seconds for lineage
Sample response:
Code Block { "startTimeInSeconds": 1442863938, "endTimeInSeconds": 1442881938, "paths": [ .... list of paths which represent the different ways field is created .... ] } Each path will look as follows: { "sources": [ { "name": "PersonFile", "properties": { "inputPath": "/data/2017/persons", "regex": "*.csv" } }, { "name": "HRFile", "properties": { "inputPath": "/data/2017/hr", "regex": "*.csv" } } ], "targets": [ { "name": "Employee Data" } ], "operations": [ { "inputs": [ { "name": "PersonRecord", "properties": { "source": "PersonFile" } } ], "outputs": [ { "name": "body" } ], "name": "READ", "description": "Read Person file.", "properties": { "stage": "Person File Reader" } }, { "inputs": [ { "name": "body" } ], "outputs": [ { "name": "SSN" } ], "name": "PARSE", "description": "Parse the body field", "properties": { "stage": "Person File Parser" } }, { "inputs": [ { "name": "HRRecord", "properties": { "source": "HRFile" } } ], "outputs": [ { "name": "body" } ], "name": "READ", "description": "Read HR file.", "properties": { "stage": "HR File Reader" } }, { "inputs": [ { "name": "body" } ], "outputs": [ { "name": "Employee_Name" }, { "name": "Dept_Name" } ], "name": "PARSE", "description": "Parse the body field", "properties": { "stage": "HR File Parser" } }, { "inputs": [ { "name": "Employee_Name" }, { "name": "Dept_Name" }, { "name": "SSN" } ], "outputs": [ { "name": "ID", "properties": { "target": "Employee Data" } } ], "name": "GenerateID", "description": "Generate unique Employee Id", "properties": { "stage": "Field Normalizer" } } ], "runs": [ "runidX", "runidY", "runidZ" ] }
...