...
WorkflowToken interface changes
Code Block /** * Interface to represent the data that is transferred from one node to the next nodes in the {@link Workflow}. */ @Beta public interface WorkflowToken { /** * Keys in the {@link WorkflowToken} can be added by user, using the * {@link WorkflowToken#put} method. These keys are added under the {@link Scope#USER} scope. * CDAP also adds some keys to the {@link WorkflowToken}. for e.g. MapReduce counters. * The keys added by CDAP gets added under {@link Scope#SYSTEM} scope. */ public enum Scope { USER, SYSTEM } /** * Put the specified key and value into the {@link WorkflowToken}. * The token may store additional information about the context in which * this key is being set, for example, the unique name of the workflow node. * @param key the key representing the entry * @param value the value for the key */ void put(String key, String value); /** * Put the specified key and {@link Value} into the {@link WorkflowToken}. * The token may store additional information about the context in which * this key is being set, for example, the unique name of the workflow node. * @param key the key representing entry * @param value the {@link Value} for the key */ void put(String key, Value value); /** * Get the most recent value added for the specified key for a {@link Scope#USER} scope. * @param key the key to be searched * @return the {@link Value} for the key or <code>null</code> if the key does not * exist in the {@link Scope#USER} scope */ @Nullable Value get(String key); /** * Get the most recent value for the specified key for a given scope. * @param key the key to be searched * @param scope the {@link WorkflowToken.Scope} for the key * @return the {@link Value} for the key from the specified scope or <code>null</code> if the key * does not exist in the given scope */ @Nullable Value get(String key, Scope scope); /** * Get the value set for the specified key by the specified node for a {@link Scope#USER} scope. * @param key the key to be searched * @param nodeName the name of the node * @return the {@link Value} set for the key by nodeName or <code>null</code> if the key is not * added by the nodeName in the {@link Scope#USER} scope */ @Nullable Value get(String key, String nodeName); /** * Get the value set for the specified key by the specified node for a given scope. * @param key the key to be searched * @param nodeName the name of the node * @param scope the {@link WorkflowToken.Scope} for the key * @return the {@link Value} set for the key by nodeName for a given scope or <code>null</code> * if the key is not added by the nodeName in the given scope */ @Nullable Value get(String key, String nodeName, Scope scope); /** * Same key can be added to the {@link WorkflowToken} by multiple nodes. * This method returns the {@link List} of {@link NodeValue}, where * each entry represents the unique node name and the {@link Value} that it set * for the specified key for a {@link Scope#USER} scope. * <p> * The list maintains the order in which the values were * inserted in the WorkflowToken for a specific key except in the case of fork * and join. In case of fork in the Workflow, copies of the WorkflowToken are made * and passed along each branch. At the join, all copies of the * WorkflowToken are merged together. While merging, the order in which the values were * inserted for a specific key is guaranteed within the same branch, but not across * different branches. * @param key the key to be searched * @return the list of {@link NodeValue} from node name to the value that node * added for the input key */ List<NodeValue> getAll(String key); /** * Same key can be added to the WorkflowToken by multiple nodes. * This method returns the {@link List} of {@link NodeValue}, where * each entry represents the unique node name and the {@link Value} that it set * for the specified key for a given scope. * <p> * The list maintains the order in which the values were * inserted in the WorkflowToken for a specific key except in the case of fork * and join. In case of fork in the Workflow, copies of the WorkflowToken are made * and passed along each branch. At the join, all copies of the * WorkflowToken are merged together. While merging, the order in which the values were * inserted for a specific key is guaranteed within the same branch, but not across * different branches. * @param key the key to be searched * @param scope the {@link WorkflowToken.Scope} for the key * @return the list of {@link NodeValue} from node name to the value that node * added for the input key for a given scope */ List<NodeValue> getAll(String key, Scope scope); /** * Get the {@link Map} of key to {@link Value}s that were added to the {@link WorkflowToken} * by specific node for a {@link Scope#USER} scope. * @param nodeName the unique name of the node * @return the map of key to values that were added by the specified node */ Map<String, Value> getAllFromNode(String nodeName); /** * Get the {@link Map} of key to {@link Value}s that were added to the {@link WorkflowToken} * by specific node for a given scope. * @param nodeName the unique name of the node * @param scope the {@link WorkflowToken.Scope} for the key * @return the map of key to values that were added by the specified node for a given scope */ Map<String, Value> getAllFromNode(String nodeName, Scope scope); /** * Same key can be added to the WorkflowToken by multiple nodes. * This method returns the key to {@link List} of {@link NodeValue} * added in the {@link Scope#USER} scope. * @return the {@link Map} of key to {@link List} of {@link NodeValue} added for * the given scope */ Map<String, List<NodeValue>> getAll(); /** * Same key can be added to the WorkflowToken by multiple nodes. * This method returns the key to {@link List} of {@link NodeValue} * added in the {@link WorkflowToken.Scope} provided. * @param scope the scope for the key * @return the {@link Map} of key to {@link List} of {@link NodeValue} added for * the given scope */ Map<String, List<NodeValue>> getAll(Scope scope); /** * This method is deprecated as of release 3.1. * Get the Hadoop counters from the previous MapReduce program in the Workflow. * The method returns null if the counters are not set. * @return the Hadoop MapReduce counters set by the previous MapReduce program */ @Deprecated @Nullable Map<String, Map<String, Long>> getMapReduceCounters(); }
The method getAll(String key) in the above interface returns the List of NodeValue objects. NodeValue class represents nodeName and value that the node put for the specific key.Code Block /** * Multiple nodes in the Workflow can add the same key to the {@link WorkflowToken}. * This class provides a mapping from node name to the {@link Value} which was set for the * specific key. */ public final class NodeValue implements Serializable { private static final long serialVersionUID = 6157808964174399650L; private final String nodeName; private final Value value; public NodeValue(String nodeName, Value value) { this.nodeName = nodeName; this.value = value; } public String getNodeName() { return nodeName; } public Value getValue() { return value; } ... // other methods like toString(), equals() and hashCode() ... }
The details of the Value class are as follows:
Code Block /** * Class representing the value of the key in the {@link WorkflowToken}. */ public class Value implements Serializable { private static final long serialVersionUID = -3420759818008526875L; private final String value; private Value(String value) { this.value = value; } /** * @return the boolean value */ public boolean getAsBoolean() { return Boolean.parseBoolean(value); } /** * @return the int value */ public int getAsInt() { return Integer.parseInt(value); } /** * @return the long value */ public long getAsLong() { return Long.parseLong(value); } /** * @return the String value */ @Override public String toString() { return value; } }
Ability to include same program multiple times in the Workflow
This can be achieved without making any changes to the API. Consider the following use case -
Use Case: Email campaign generates two categories of events - send events (SUCCESS, FAIL) and tracking events (OPEN, CLICK etc.). Records representing the send event and tracking event have different schema. These two categories of the events are sent to CDAP using streams "send" and "tracking".
Tracking event format:
audience_id,event_type,ip_address,device_type,event_time,link
Example records:
bob,CLICK,192.168.29.10,android,1436311150092,http://www.somedomain.com
adam,CLICK,192.168.29.18,ipad,1436311232276,http://www.anotherdomain.com
Send event format:
audience_id::event_sub_type::ip_address::deliveryCode::event_time
Example records:
bob::SEND::192.168.29.10::SUCCESS::1436311232276
adam::SEND::192.168.29.9::SUCCESS::1436311434476
Same MapReduce program "EventParser" can be used in the Workflow to parse these two categories of the events in parallel and create the list Event object per audience id.
EventParser application:
Code Block language java public class EventParserApp extends AbstractApplication { @Override public void configure() { // Stream to receive send events addStream(new Stream("send")); // Stream to receive tracking events addStream(new Stream("tracking")); // Add EventParser MapReduce program multiple times in the application with different properties Map<String, String> properties = Maps.newHashMap(); properties.put("input.stream", "tracking"); // 'trackingParser' is instance of the EventParser which will read the 'tracking' stream addMapReduce(new EventParser("trackingParser", properties)); properties = Maps.newHashMap(); properties.put("input.stream", "send"); // 'sendParser' is instance of the EventParser which will read the 'send' stream addMapReduce(new EventParser("sendParser", properties)); // Add Workflow which will process the tracking and send events in parallel addWorkflow(new EventParserWorkflow()); } }
EventParser MapReduce program:
Code Block language java public class EventParser extends AbstractMapReduce { private final String name; private final Map<String, String> properties; public EventParser(String name, Map<String, String> properties) { this.name = name; this.properties = properties; } @Override public void configure() { setName(name); setDescription("MapReduce program for parsing the email events and storing them in the dataset."); // Serialize the properties setProperties(properties); setOutputDataset("events"); } @Override public void beforeSubmit(MapReduceContext context) throws Exception { Job job = context.getHadoopJob(); job.setMapperClass(EventParserMapper.class); job.setReducerClass(EventParserReducer.class); job.setMapOutputKeyClass(Text.class); job.setOutputValueClass(Event.class); job.setNumReduceTasks(1); String streamToVerify = context.getSpecification().getProperties().get("input.stream"); job.getConfiguration().set("input.stream", streamToVerify); // Read the purchase events from the last 60 minutes as input to the mapper. final long endTime = context.getLogicalStartTime(); final long startTime = endTime - TimeUnit.MINUTES.toMillis(60); StreamBatchReadable.useStreamInput(context, streamToVerify, startTime, endTime); } } // EventParserMapper public static class EventParserMapper extends Mapper<LongWritable, Text, Text, Event> { @Override public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String logEvent = value.toString(); if (logEvent.isEmpty()) { return; } String inputStream = context.getConfiguration().get("input.stream"); Event event; if(inputStream.equals("send")) { event = getSendEvent(logEvent); } else { event = getTrackingEvent(logEvent); } if (event != null) { context.write(new Text(event.getAudienceId()), event); } } private Event getSendEvent(String logEvent) { String seperator = "::"; int fieldLength = 5; String[] fields = logEvent.split(seperator); if (fields.length != fieldLength) { return null; } String audienceId = fields[0]; String eventType = fields[1]; String ipAddress = fields[2]; String deliveryCode = fields[3]; String eventTime = fields[4]; return new Event(audienceId, eventType, ipAddress, eventTime, deliveryCode) } private Event getTrackingEvent(String logEvent) { String seperator = ","; int fieldLength = 6; String[] fields = logEvent.split(seperator); if (fields.length != fieldLength) { return null; } String audienceId = fields[0]; String eventType = fields[1]; String ipAddress = fields[2]; String deviceType = fields[3]; String eventTime = fields[4]; String link = fields[5]; return new Event(audienceId, eventType, ipAddress, eventTime, deviceType + "&&" + link); } }
EventParserWorkflow:
Code Block language java public class EventParserWorkflow extends AbstractWorkflow { @Override protected void configure() { fork() .addMapReduce("trackingParser") .also() .addMapReduce("sendParser") .join(); } }
Provide ability to set and get information in the WorkflowToken
1. MapReduce program: Users should be able to access and modify WorkflowToken from "beforeSubmit" and "onFinish" methods of the MapReduce program. Since these methods get the MapReduceContext, we will need to update the MapReduceContext interface to get the WorkflowToken.Code Block /** * If {@link MapReduce} program is executed as a part of the {@link Workflow} * then get the {@link WorkflowToken} associated with the current run, otherwise return null. * @return the {@link WorkflowToken} if available */ @Nullable WorkflowToken getWorkflowToken();
Consider the following code sample to update the WorkflowToken in the MapReduce program:
Code Block @Override public void beforeSubmit(MapReduceContext context) throws Exception { ... WorkflowToken workflowToken = context.getWorkflowToken(); if (workflowToken != null) { // Put the action type in the WorkflowToken workflowToken.put("action_type", "MAPREDUCE"); // Put the start time for the action workflowToken.put("startTime", String.valueOf(System.currentTimeMillis())); } ... } @Override public void onFinish(boolean succeeded, MapReduceContext context) throws Exception { ... WorkflowToken workflowToken = context.getWorkflowToken(); if (workflowToken != null) { // Put the end time for the action workflowToken.put("endTime", String.valueOf(System.currentTimeMillis())); } ... }
2. Spark program: Users should be able to access and modify WorkflowToken from "beforeSubmit" and "onFinish" methods of the Spark program. Since these methods get the SparkContext, we will need to update the SparkContext interface to get the WorkflowToken.
Code Block /** * If {@link Spark} program is executed as a part of the {@link Workflow} * then get the {@link WorkflowToken} associated with the current run, otherwise return null. * @return the {@link WorkflowToken} if available */ @Nullable WorkflowToken getWorkflowToken();
3. Custom Workflow action: Since custom workflow actions already receive WorkflowContext, no changes are anticipated in the interface.
Following is the sample code to get values from the WorkflowToken in custom action:
Code Block @Override public void run() { ... WorkflowToken token = getContext().getToken(); // set the type of the action of the current node token.put("action_type", "CUSTOM_ACTION"); // Assume that we have the following Workflow // |------->PurchaseByCustomer------->| // True | | // Start---->RecordVerifier---->Predicate-------->| |------------->StatusReporter----->End // | | | | // | False |------->PurchaseByProduct-------->| | // | | // |--------------------->ProblemLogger--------------------->| // Use case 1: Predicate can add the key "branch" in the WorkflowToken with value as "true" if true branch will be executed // or "false" otherwise. In "StatusReporter" in order to get which branch in the Workflow was executed boolean bTrueBranch = Boolean.parseBoolean(token.get("branch")); // Use case 2: User may want to compare the records emitted by "PurchaseByCustomer" and "PurchaseByProduct", in order to find which job // is generating more records. String flattenReduceOutputRecordsCounterName = "org.apache.hadoop.mapreduce.TaskCounter.REDUCE_OUTPUT_RECORDS"; String purchaseByCustomerCounterValue = token.get(flattenReduceOutputRecordsCounterName, "PurchaseByCustomer", WorkflowToken.Scope.SYSTEM); String purchaseByProductCounterValue = token.get(flattenReduceOutputRecordsCounterName, "PurchaseByProduct", WorkflowToken.Scope.SYSTEM); // Use case 3: Since Workflow can have multiple complex conditions and forks in its structure, in the "StatusReporter", // user may want to know how many actions were executed as a part of this run. If the number of nodes executed were below // certain threshold send an alert. Assuming that every node in the Workflow adds the key "action_type" with the value as action // type for node in the WorkflowToken, user can further figure out the break down by action type in the particular Workflow run. List<NodeValueEntry> nodeValues = token.getAll("action_type"); int totalNodeExecuted = nodeValues.size(); int mapReduceNodes = 0; int sparkNodes = 0; int customActionNodes = 0; int conditions = 0; for (NodeValueEntry entry : nodeValues) { if (entry.getValue().equals("MAPREDUCE")) { mapReduceNodes++; } if (entry.getValue().equals("SPARK")) { sparkNodes++; } if (entry.getValue().equals("CUSTOM_ACTION")) { customActionNodes++; } if (entry.getValue().equals("CONDITION")) { conditions++; } } // Use case 4: To get the name of the last node which set the "ERROR" flag in the WorkflowToken List<NodeValueEntry> errorNodeValueList = token.getAll("ERROR"); String nodeNameWhoSetTheErrorFlagLast = errorNodeValueList.get(errorNodeValueList.size() - 1); // To get the start time of the MapReduce program with unique name "PurchaseHistoryBuilder" String startTime = token.get("startTime", "PurchaseHistoryBuilder"); // To get the most recent value of counter with group name // 'org.apache.hadoop.mapreduce.TaskCounter' and counter name 'MAP_INPUT_RECORDS' String flattenCounterKey = "mr.counters.org.apache.hadoop.mapreduce.TaskCounter.MAP_INPUT_RECORDS"; workflowToken.get(flattenCounterKey, WorkflowToken.Scope.SYSTEM); // To get the value of counter with group name 'org.apache.hadoop.mapreduce.TaskCounter' // and counter name 'MAP_INPUT_RECORDS' as set by MapReduce program with unique name 'PurchaseHistoryBuilder' workflowToken.get(flattenCounterKey, "PurchaseHistoryBuilder", WorkflowToken.Scope.SYSTEM); ... }
- WorkflowToken in presence of Fork and Join
When a fork is encountered in the Workflow, we make a copy of the WorkflowToken and pass it along to each branch. At the join, we create a new WorkflowToken, which will be a merge of the WorkflowTokens associated with each of the branches of the fork. Since we are storing the information in the token at the node level, there will not be any conflicts during the merge process. - Persisting the WorkflowToken
The RunRecord for the Workflow will contain the WorkflowToken as its property. This token will be updated before the execution of the action in the Workflow. We will add a version field to the RunRecord itself which will help in the upgrade process. - RESTful end-points to access the value of the WorkflowToken that was received by an individual node in the WorkflowWe will expose a RESTful end point to retrieve the token values that were set by a particular node as identified by its unique name.1. To get the values that user put in the WorkflowToken for a particular run
Code Block language java /apps/{app-id}/workflows/{workflow-nameid}/runs/{run-id}/token
2. To get the values that CDAP put (e.g. MapReduce counters for MapReduce nodes) in the WorkflowToken for a particular run
Code Block /{unique-node-name}/tokenapps/{app-id}/workflows/{workflow-id}/runs/{run-id}/token?scope=system
3. To get the key values in the USER scope that particular node added to the WorkflowToken
Code Block /apps/{app-id}/workflows/{workflow-id}/runs/{run-id}/nodes/{node-id}/token
4. To get the key values in the SYSTEM scope that particular node added to the WorkflowToken
Code Block /apps/{app-id}/workflows/{workflow-id}/runs/{run-id}/nodes/{node-id}/token?scope=system
REST API Response Comments Reviewed? /namespaces/{namespace-id}/apps/{app-id}/workflows/{workflow-name}/runs/{run-id}/token Json containing the entire workflow token for a particular workflow run e.g.
Code Block { "tokenValueMap": { "key1": [ { "nodeName": "node1", "value": "value1" }, { "nodeName": "node2", "value": "value2" } ], "key2": [ { "nodeName": "node2", "value": "v2" } ] } }
Response Codes:
200 if successful
404 if app/workflow not found
500 if there is an internal error/namespaces/{namespace-id}/apps/{app-id}/workflows/{workflow-name}/runs/{run-id}/nodes/{unique-node-name}/token Code Block { "key1": "value1", "key2": "value2 }
Response Codes:
200 if successful
404 if app/workflow not found
500 if there is an internal error
...