
PROPRIETARY &
CONFIDENTIAL

Writing Maintainable Code
Make your life and other’s easier

Andreas - June 2015

PROPRIETARY &
CONFIDENTIAL

What this talk is not about
● How to write scalable code
● How to write high performance code
● How to design re-usable, extensible, long-lived APIs
● How to use Java efficiently
● What Scala teaches us about writing better Java code
● The Paxos Algorithm

There are plenty of books about this.

PROPRIETARY &
CONFIDENTIAL

What this talk is about
● How to write maintainable code
● How to write debuggable code
● How to write understandable code
● How to use Javadoc efficiently

Most books don’t talk about this

PROPRIETARY &
CONFIDENTIAL

Why bother?
Have you ever heard this:

- Good code needs no documentation
- API is self-explaining
- Good code has no errors
- Javadocs are a waste of time because they get out

of sync with the code
- Error handling makes the code ugly

PROPRIETARY &
CONFIDENTIAL

Why bother?
Have you ever heard this:

- Good code needs no documentation
- API is self-explaining
- Good code has no errors
- Javadocs are a waste of time because they get out

of sync with the code
- Error handling makes the code ugly
- …
- A good driver does not need a seat belt or air bag

PROPRIETARY &
CONFIDENTIAL

Why bother
● You work in a large team

○ Cask has two dozen developers
○ One day it may have 2 thousand
○ Cask’s code is Open Source

● Your code may live a long time
○ used by developers that you never met
○ used by customers that you never dreamed of

● You don’t want to
○ explain your code to others for the next 10
○ wake up to a pager when your code failed
○ debug other people’s code who did not bother

PROPRIETARY &
CONFIDENTIAL

Why bother
● Problems will happen

○ In environments that we cannot access
○ In situations that require immediate resolution
○ In ways that you never expected

● When that happens, we have
○ Only the logs
○ Perhaps some metrics
○ With a lot of luck, a heap dump

● Who will deal with it? People who
○ Who don’t write code
○ Don’t know how to read code written by others

PROPRIETARY &
CONFIDENTIAL

Why bother
● you got it?

PROPRIETARY &
CONFIDENTIAL

Goals
● Other Cask developers can understand my APIs
● Customer’s developers can understand my APIs
● Cask customer support can debug problems in my code
● Customers can debug problems in my code
● Customers can fix problems not caused by my code

○ Every support ticket costs money
○ A Google search costs (us) nothing

● Customers understand what is going wrong
○ Perception of complexity
○ Perception of not having control

● Empower the person who observes a problem to fix it!

PROPRIETARY &
CONFIDENTIAL

Topics
● Naming
● Javadocs
● Annotations
● Comments
● Logs
● Error Handling
● Testing
● Code analysis

PROPRIETARY &
CONFIDENTIAL

Naming
The name is the first and strongest documentation
● Use descriptive variable/parameter names

void setTimeout(long i, long ts)

void setTimeout(long id, long timeout)

void setTimeout(long id, long timeoutSeconds)

● Use informative method names
void setTTL(long ttl)

void setTimeToLive(long secondsToLive)

● Longer names are worth the real estate on your
screen

PROPRIETARY &
CONFIDENTIAL

Naming
● Don’t use meaningless Names

abstract class BaseWhatever { ...

class SimpleWhatever extends BaseWhatever { ...

class ActualWhatever extends SimpleWhatever { ...

● Better
abstract class AbstractWhatever { ...

class PersistingWhatever extends AbstractWhatever

class HBaseWhatever extends PersistingWhatever

PROPRIETARY &
CONFIDENTIAL

Javadocs
Purpose: Help understand the API
● describe what a method does
● describe what a parameter means
● describe what the return value means
● describe what happens in case of error

For whom?
● Cask developers
● Open source developers
● Customer’s developers

PROPRIETARY &
CONFIDENTIAL

Javadocs
Principles
● Do not document the obvious

ConsumerID getConsumerID();

● What’s obvious to you is not obvious to others

public Map<String, String> getProperties() {
 ...

}

public Map<String, String> getResolvedProperties() {

 ...

}

(This is actual CDAP code...)

PROPRIETARY &
CONFIDENTIAL

Javadocs
● What’s obvious to you is not obvious to others

long getTTL()

/**
 * @return the time to live in seconds

 */

long getTimeToLive()

● Do document border conditions
* @return instance of {@link Row}; never {@code null};
 returns an empty Row if nothing read

PROPRIETARY &
CONFIDENTIAL

Javadocs
What deserves Javadocs?
● Public methods and constants of public classes

○ Unless they are self-explaining
○ Getters, setters, default constructor

● Protected methods
○ Important because public to subclasses

● Abstract methods
○ Subclasses must override these methods

● Public classes
● All interfaces and their methods

○ Caller cannot know implementation

PROPRIETARY &
CONFIDENTIAL

Annotations
● Annotations are a short form of commenting:

@Nullable

byte[] toBytes(@Nullable String input)

● Better than Javadocs?
○ Often makes Javadoc unnecessary

● Do not use @NotNull or @Nonnull
○ We assume that non-null is expected
○ We document if that is not the case (@Nullable)

PROPRIETARY &
CONFIDENTIAL

Annotations
● can also be used to suppress warnings

class NoOpPersistence implements Persistence {

@SuppressWarnings(“unused”)

void persist(String key, String value) {

// do nothing

}

PROPRIETARY &
CONFIDENTIAL

Comments
● Comments help others understand your code
● Focus on the why, not the what

switch (programType) {

case ...: { ...

...

}

case WORKFLOW: {

 // can never happen

}

● Code (and invariants) change over time

PROPRIETARY &
CONFIDENTIAL

Comments
● Better to say why:

switch (programType) {

case ...: { ...

...

}

case WORKFLOW: {

 // can never happen because this method should only

 // be called for real-time pograms

}

PROPRIETARY &
CONFIDENTIAL

Comments
● Better to deal with it:

switch (programType) {

case ...: { ...

...

}

case WORKFLOW: {

 // this method should only be called for real-time pograms

 throw new IllegalArgumentException(

 “This method should only be called for real-time “

+ “ programs, but programType is “ + programType);

}

● Now the comment is actually unnecessary

PROPRIETARY &
CONFIDENTIAL

Comments
● Don’t comment the obvious

// get the consumer id

Id consumerId = getConsumerId(context);

● Comment on
○ What the code does
○ How the code does it, and why
○ How it can be improved

// TODO: incredibly non-efficient:
// it is performed for each metrics data point
return value.getTags().hashCode();

○ Even better: Include a Jira for the To-Do
// TODO: [CDAP-2281] test schedules in a better way

PROPRIETARY &
CONFIDENTIAL

Logging
● Some logs are too chatty
● Some logs are too shy

What to log at what level?
● Error: Unexpected Failures that may indicate system failure

or serious problems
○ Out of disk space
○ Cannot connect to Database
○ Socket already in use
○ ...
○ A user/client error is expected and is at most Info

PROPRIETARY &
CONFIDENTIAL

Logging
What to log at what level?
● Warning: Unexpected Events that are not fatal

○ Zookeeper connection lost
○ Use of a deprecated configuration property

● Info: Expected Events that are useful to the Admin
○ Flow started at time T
○ Reconfiguration request received
○ Version of Hive detected as 0.14

PROPRIETARY &
CONFIDENTIAL

Logging
What to log at what level?
● Debug: Information that helps pinpoint a problem

○ Flowlet uses these three datasets
○ Transaction failed due to conflict. Retrying
○ Invalid client request received

● Trace: Anything that would only distract in normal cases
○ Replaces a debugger
○ Actual parameter values
○ Sequence of execution within a method
○ ...

PROPRIETARY &
CONFIDENTIAL

Logging
Who should log an exception?
● The code that throws it? No!

○ It has the most context
○ Actual values of variables that led to the error
○ But it does not know whether the error is expected
○ Include all meaningful information in the exception

● The code that catches it? Yes!
○ Can decide whether this error is serious
○ Can decide to log the error and continue
○ Can decide to react to the error without logging
○ Can decide to throw a different exception

PROPRIETARY &
CONFIDENTIAL

Messages
● Include all meaningful information
● What is meaningful? For example:

○ The context in which an error happens
○ The reason for an error
○ The steps that can be taken to fix it

LOG.error("Flow failed to start because of a dataset problem")

LOG.error(String.format("Flow %s failed to start because of a
 problem loading dataset %s: ",

 flowId, datasetName), exn);

PROPRIETARY &
CONFIDENTIAL

Error Handling
● Never ignore an exception

○ Empty catch blocks are evil
○ If you really know that the exception can be

ignored, add a comment
} catch (AlreadyExistsException e) {
 // another thread has already created it
}

○ If you know that this exception can never be
thrown, rethrow it using an IllegalStateException

} catch (UnsupportedTypeException e) {
 // this should never happen

 throw new IllegalStateException("...", e);
}

PROPRIETARY &
CONFIDENTIAL

Exceptions
Java has checked and unchecked exceptions
● Checked Exceptions

○ declared by method using throws clause
○ callers of the method must handle them
○ represent expected errors

● Unchecked Exceptions
○ need not be declared
○ need not be handled
○ represent unexpected or unrecoverable errors

PROPRIETARY &
CONFIDENTIAL

Exceptions
Guidelines
● Throw checked exceptions when possible
● Add javadocs for your checked exceptions

○ To help others understand what gets thrown when
● Use unchecked exceptions for errors that are unexpected

and cannot be handled
● Do not convert checked exceptions in unchecked ones

○ Avoid Throwables.propagate()

} catch (IOException e) {
 // This is fatal, since jar cannot be expanded.
 throw Throwables.propagate(e);
}

PROPRIETARY &
CONFIDENTIAL

Preconditions
● Purpose

○ Validate the inputs of a method
○ Throw unchecked exceptions
○ This means “internal error”

● Do not use Preconditions on the results of a computation
or a method call

Preconditions.checkState(job.isSuccessful(),
 "MapReduce execution failure: %s", job.getStatus());

● Do not use Preconditions to validate arguments from an
external client or a user
○ These are expected and should throw meaningful

exceptions

PROPRIETARY &
CONFIDENTIAL

Testing
● Always test for border conditions
● Always test negative case

○ Assert that the correct exception is thrown
● If a test case fails, do not @Ignore it, but fix it.
● Document your tests

○ Others will maintain and extend your tests
○ Others need to understand how the test works

● Write unit tests where possible
○ Integration tests run much longer
○ Unit tests can provide much better coverage

● Every time you fix a bug: Add a test case

PROPRIETARY &
CONFIDENTIAL

Compiler / IDE Warnings
● These warnings are meaningful
● All code should compile without warnings

○ and no warnings from IntelliJ
● Use @SuppressWarnings if you can’t avoid the

code that produces the warning
○ add a comment why you think the warning can

be suppressed (unless it is obvious)

PROPRIETARY &
CONFIDENTIAL

Conclusion
● We can all write better code
● A minute of work can save hours of support
● These are guidelines and not dogmas
● Everybody should apply common sense
● Every code review should pay attention to this

