Writing Maintainable Code

Make your life and other’s easier

Andreas - June 2015

What this talk is not about

How to write scalable code

How to write high performance code

How to design re-usable, extensible, long-lived APIs
How to use Java efficiently

What Scala teaches us about writing better Java code
The Paxos Algorithm

There are plenty of books about this.

What this talk /s about

How to write maintainable code
How to write debuggable code
How to write understandable code
How to use Javadoc efficiently

Most books don’t talk about this

Why bother?

Have you ever heard this:

- Good code needs no documentation

- APl is self-explaining

- Good code has no errors

- Javadocs are a waste of time because they get out
of sync with the code

- Error handling makes the code ugly

Why bother?

Have you ever heard this:

- Good code needs no documentation

- APl is self-explaining

- Good code has no errors

- Javadocs are a waste of time because they get out
of sync with the code

- Error handling makes the code ugly

- A good driver does not need a seat belt or air bag

Why bother

e You work in a large team

o Cask has two dozen developers

o One day it may have 2 thousand

o Cask’s code is Open Source
e Your code may live a long time

o used by developers that you never met

o used by customers that you never dreamed of
e You don't want to

o explain your code to others for the next 10

o wake up to a pager when your code failed

o debug other people’s code who did not bother

Why bother

e Problems will happen
o In environments that we cannot access
o In situations that require immediate resolution
o In ways that you never expected
e \When that happens, we have
o Only the logs
o Perhaps some metrics
o With a lot of luck, a heap dump
e \Who will deal with it? People who
o Who don'’t write code
o Don’t know how to read code written by others

Why bother

e Yyou got it?

Goals

Other Cask developers can understand my APIs
Customer’s developers can understand my APIs
Cask customer support can debug problems in my code
Customers can debug problems in my code
Customers can fix problems not caused by my code

o Every support ticket costs money

o A Google search costs (us) nothing

Customers understand what is going wrong

o Perception of complexity

o Perception of not having control

Empower the person who observes a problem to fix it!

Topics

Naming
Javadocs
Annotations
Comments
Logs

Error Handling
Testing

Code analysis

Naming

The name is the first and strongest documentation
e Use descriptive variable/parameter names

void setTimeout (long i, long ts)

void setTimeout (long id, long timeoutSeconds)

e Use informative method names
void setTTL(long ttl)

volid setTimeTolLive (long secondsToLive)

e Longer names are worth the real estate on your
screen

PROPRIETARY &

CONFIDENTIAL

Naming

e Don’t use meaningless Names

abstract class BaseWhatever {
class SimpleWhatever extends BaseWhatever {

class ActualWhatever extends SimpleWhatever {

e PBetter

abstract class AbstractWhatever {
class PersistingWhatever extends AbstractWhatever

class HBaseWhatever extends PersistingWhatever

PROPRIETARY &

CONFIDENTIAL

Javadocs

Purpose: Help understand the API

describe what a method does

describe what a parameter means
describe what the return value means
describe what happens in case of error

For whom?

e C(Cask developers
e Open source developers
e (Customer’s developers

Javadocs

Principles
e Do not document the obvious

e \What’s obvious to you is not obvious to others

public Map<String, String> getProperties () {

}
public Map<String, String> getResolvedProperties () {

}
(This is actual CDAP code...)

PROPRIETARY &

CONFIDENTIAL

Javadocs

e \What's obvious to you is not obvious to others

long getTTL ()

/**

* @return the time to live 1in seconds
v

long getTimeToLive ()

e Do document border conditions

* @return instance of {@link Row}; never {lcode null};
returns an empty Row if nothing read

PROPRIETARY &

CONFIDENTIAL

Javadocs

What deserves Javadocs?

e Public methods and constants of public classes
o Unless they are self-explaining
o Getters, setters, default constructor
e Protected methods
o Important because public to subclasses
e Abstract methods
o Subclasses must override these methods
e Public classes
e All interfaces and their methods
o Caller cannot know implementation

Annotations

e Annotations are a short form of commenting:

@Nullable
byte[] toBytes(@Nullable String input)

e Better than Javadocs?
o Often makes Javadoc unnecessary

e Do notuse @NotNull or @Nonnull
o We assume that non-null is expected
o We document if that is not the case (@Nullable)

Annotations

e can also be used to suppress warnings

class NoOpPersistence implements Persistence {
@SuppressWarnings (“unused”)
volid persist (String key, String value) {

// do nothing

PROPRIETARY &

CONFIDENTIAL

Comments

e Comments help others understand your code
e Focus on the why, not the what

switch (programType) {

case ...: {

}
case WORKFLOW: {

// can never happen

}
e Code (and invariants) change over time

PROPRIETARY &

CONFIDENTIAL

Comments

e Better to say why:

switch (programType) {
case ...: { ...

}
case WORKFLOW: {

PROPRIETARY &
CONFIDENTIAL

Comments

e Better to deal with it:
switch (programType) {

case ...: {

}
case WORKFLOW: {

throw new IllegalArgumentException (
“This method should only be called for real-time “
+ “ programs, but programType is “ + programType) ;
}

e Now the comment is actually unnecessary

PROPRIETARY &

CONFIDENTIAL

Comments

e Don’t comment the obvious

e Comment on
o What the code does
o How the code does it, and why

o How it can be improved

// TODO: incredibly non-efficient:
// it is performed for each metrics data point
return value.getTags () .hashCode () ;

o Even better: Include a Jira for the To-Do
// TODO: [CDAP-2281] test schedules in a better way

PROPRIETARY &

CONFIDENTIAL

Logging

e Some logs are too chatty
e Some logs are too shy

What to log at what level?

e Error: Unexpected Failures that may indicate system failure
or serious problems
o Out of disk space

Cannot connect to Database

Socket already in use

O O O O

A user/client error is expected and is at most Info

Logging

What to log at what level?

e Warning: Unexpected Events that are not fatal
o Zookeeper connection lost
o Use of a deprecated configuration property
e Info: Expected Events that are useful to the Admin
o Flow started attime T
o Reconfiguration request received
o Version of Hive detected as 0.14

Logging

What to log at what level?

e Debug: Information that helps pinpoint a problem
o Flowlet uses these three datasets
o Transaction failed due to conflict. Retrying
o Invalid client request received
e Trace: Anything that would only distract in normal cases
o Replaces a debugger
o Actual parameter values
o Sequence of execution within a method
O

Logging

Who should log an exception?

e The code that throws it? No!
o It has the most context
o Actual values of variables that led to the error
o But it does not know whether the error is expected
o Include all meaningful information in the exception
e The code that catches it? Yes!
Can decide whether this error is serious
Can decide to log the error and continue
Can decide to react to the error without logging
Can decide to throw a different exception

O O O O

Messages

e Include all meaningful information

e \What is meaningful? For example:
o The context in which an error happens
o The reason for an error
o The steps that can be taken to fix it

LOG.error ("Flow failed to start because of a dataset problem")

LOG.error (String.format ("Flow %s failed to start because of a

problem loading dataset %s: ",

flowId, datasetName), exn);

PROPRIETARY &

CONFIDENTIAL

Error Handling

e Never ignore an exception
o Empty catch blocks are evil
o If you really know that the exception can be

ignored, add a comment

} catch (AlreadyExistsException e) {
// another thread has already created it
}

o If you know that this exception can never be

thrown, rethrow it using an lllegalStateException

} catch (UnsupportedTypeException e) {
// this should never happen

throw new IllegalStateException("...", e);

}

PROPRIETARY &

CONFIDENTIAL

Exceptions

Java has checked and unchecked exceptions

e Checked Exceptions
o declared by method using throws clause
o callers of the method must handle them
o represent expected errors
e Unchecked Exceptions
o need not be declared
o need not be handled
o represent unexpected or unrecoverable errors

Exceptions

Guidelines

e Throw checked exceptions when possible

e Add javadocs for your checked exceptions
o To help others understand what gets thrown when

e Use unchecked exceptions for errors that are unexpected
and cannot be handled

e Do not convert checked exceptions in unchecked ones
o Avoid Throwables.propagate ()

} catch (IOException e) {

// This is fatal, since jar cannot be expanded.
throw Throwables.propagate (e) ;

PROPRIETARY &

CONFIDENTIAL

Preconditions

e Purpose
o Validate the inputs of a method
o Throw unchecked exceptions
o This means “internal error”
e Do not use Preconditions on the results of a computation
or a method call

Preconditions.checkState (job.isSuccessful (),
"MapReduce execution failure: %s", job.getStatus());

e Do not use Preconditions to validate arguments from an
external client or a user
o These are expected and should throw meaningful
exceptions

PROPRIETARY &

CONFIDENTIAL

Testing

Always test for border conditions

Always test negative case

o Assert that the correct exception is thrown

If a test case fails, do not @Ignore it, but fix it.
Document your tests

o Others will maintain and extend your tests

o Others need to understand how the test works
Write unit tests where possible

o Integration tests run much longer

o Unit tests can provide much better coverage
Every time you fix a bug: Add a test case

Compiler / IDE Warnings

e These warnings are meaningful
e All code should compile without warnings
o and no warnings from IntelliJ
e Use @SuppressWarnings if you can’t avoid the
code that produces the warning
o add a comment why you think the warning can
be suppressed (unless it is obvious)

Conclusion

We can all write better code

A minute of work can save hours of support
These are guidelines and not dogmas
Everybody should apply common sense
Every code review should pay attention to this

