CDAP Metrics Perf Explained




Problem

e Understanding metrics system performance is required for
successful production experience of CDAP
e (Customers already had problems with metrics system
performance
e [nability of processing to keep up with emitting makes operating
CDAP a “flying blind” experience
e |nability to scale out metrics processing makes impossible to
get back from “flying blind” to normal operations
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CDAP Metrics Overview: Data Flow
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CDAP Metrics Overview: Cube

. Row key format:

E<1—byte reserved for version>

' <encoded agg group><time base> :
 <encoded diml value>...<encoded dimN value> :
. <encoded measure name> :
: Note: no need to put dim name in row key, as agg group

. identifies dim list.

.................................................................

write /’—HT\

FactTable fact table |
| read _prl
Cube
T entity table
EntityTable
\ /
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Metrics System Analysis goals: | Understand costoverhead:
* cost - using extra resources, separate setup, etc.;
overhe: on the running programs, data
processing and such.
Sometimes the border between two is biurred.
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Cube (zoomed)

e, uses Pt or “IncrementPut” (eadiess
increment) when updating gauge and counter
respective Row key format: Within agg group, facts ordered by
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No pre-split on table
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Detalils (continues on next slides)

MetricsTransport
(Kafka) : : : .
X A thing emits MetricValues into Kafka:
publish public class MetricValues {
private final long timestamp;
private final Map<String, String> tags;
MetricsContext ] private final Collection<MetricValue> metrics;
: ¥
Lremit
a’Fhing _
that emits metrics Every second, a thing emits
Srocess that <# of MetricsContext> MetricValues.
runs a thing
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MetricsTransport Metrics
(Kaka) V% consume —Pp-| Kafka consumer | Processor
MetricsStore ||
Cube |
. — >
\ HBase

All metrics data are written into single topic with multiple partitions (10 by default).

There’s a Kafka consumer per each partition. Consumes in micro batches (if data available).
At consuming MetricValues is translated into a CubeFact:
public class CubeFact {

private final long timestamp;

private final Map<String, String> dimensionValues;
private final Collection<Measurement> measurements;

}
and written into a Cube.
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wite ¢ HBase

FactTable fact table
> read i
Cube
. entity table
EntityTable
o B

Cube is configured with what to pre-aggregate (for faster querying). E.g.:
* by namespace

* by namespace*by_app

* by namespace*by app*by_ flow*by run*by flowlet*by instance

On average, one CubeFact is fanned out into 3 Facts:

public final class Fact {
private final long timestamp;
private final List<DimensionValue> dimensionValues;
private final Collection<Measurement> measurements;

by
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T lRaen N

FactTable fact table
> read i
Cube
. entity table
EntityTable
o B

Facts are written into multiple pre-aggregated time resolutions:
1sec, 1min, 1hr, “totals”.

Aggregated data for each time resolution is stored in its own
HBase table.
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. Row key format:

, <l-byte reserved for version>

. <encoded agg group><time base> .
: <encoded diml value>...<encoded dimN value> :
: <encoded measure name> :

+ Note: no need to put dim name in row key, as agg group

. identifies dim list.

# metrics contexts = # CubeFacts

# Facts fanned out = # CubeFacts * # aggregations

# Facts written = # Facts * # resolutions

# HBase records written = # of measurements in Facts written

Each emitted metric may result into a LOT of HBase records written!

Note: within each table within each aggregation row keys are monotonically increasing, i.e.
writes hit single region potentially creating a “hotspotting” issue.
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Instrumentation!
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20 flowlet inst, 100 metrics -> 20 CubeFacts->
60 Facts -> 240 Facts written -> 24K increments

6K increments into each HBase table
2K increments into each aggregation

l.e. 2K writes hit same region with monotonically
increasing row keys.

l.e. 20 system metrics emitted by 500 flowlet
instances result in 10K Puts into same Region = ~limit




. Row key format:

E<1—byte reserved for version>

 <encoded agg group><time base>

! <encoded diml value>...<encoded dimN value> !
: <encoded measure name> :
: Note: no need to put dim name in row key, as agg group

. identifies dim list.

Number of HBase records written reduces when metrics processor grabs bigger
batches of metrics data to process in single iteration

# metrics contexts = # CubeFacts

# Facts fanned out = # CubeFacts * # aggregations

# Facts written = # Facts * # resolutions

# HBase records written = # of measurements in Facts written
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50 flowlet inst, 100 metrics -> 5K* Puts into
same Region (60K* total) results in 2-5 sec
delay in processing

200 flowlet inst, 100 metrics -> 20K* Puts into
same region (240K* total) results in 120 sec
delay in processing




50 flowlet inst, 100 metrics -> 5K* Puts into
same Region (60K* total) results in 2-5 sec
delay in processing

200 flowlet inst, 100 metrics -> 20K* Puts into
same region (240K* total) results in 120 sec
delay in processing

But it keeps up!




Verdict: lots of Opportunities!

* A single metrics processor may not be able to keep up (within
reasonable processing delay) even with hundreds of program
containers running on cluster.

« Cannot increase processing throughput by simply scaling out
metrics processors.
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Suggested Improvements

No pre-split of Cube tables -> “slow start”

* pre-split per aggregation?
Hotspotting within aggregation -> hard limit writes, esp. in “bigger aggregations”,
e.g. “across namespace’

« salt rowkeys within aggregations?

* + fix scalability issues?
(?) Metric name in row key vs column key -> many “narrow Puts” vs few “wide
Puts”

* move measure name into column?

 should only speedup queries
Reduce number of aggregations, esp. bigger ones

* may result in more complex querying: across aggregations
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