
PROPRIETARY &
CONFIDENTIAL

Alex

CDAP Metrics Perf Explained

06/29/2015

PROPRIETARY &
CONFIDENTIALPROPRIETARY & CONFIDENTIAL

Problem
● Understanding metrics system performance is required for

successful production experience of CDAP
● Customers already had problems with metrics system

performance
● Inability of processing to keep up with emitting makes operating

CDAP a “flying blind” experience
● Inability to scale out metrics processing makes impossible to

get back from “flying blind” to normal operations

PROPRIETARY &
CONFIDENTIALPROPRIETARY & CONFIDENTIAL

CDAP Metrics Overview: Data Flow

PROPRIETARY &
CONFIDENTIALPROPRIETARY & CONFIDENTIAL

CDAP Metrics Overview: Cube

PROPRIETARY &
CONFIDENTIALPROPRIETARY & CONFIDENTIAL

Overhead,
Performance,

Scalability
analysis @CDAP-1127

PROPRIETARY &
CONFIDENTIALPROPRIETARY & CONFIDENTIAL

Details (continues on next slides)

A thing emits MetricValues into Kafka:

public class MetricValues { 
 private final long timestamp;  
 private final Map<String, String> tags;  
 private final Collection<MetricValue> metrics;  
}

Every second, a thing emits
<# of MetricsContext> MetricValues.process that

runs a thing

MetricsContext

a thing
that emits metrics

MetricsContext

emit

publish

MetricsTransport
(Kafka)

PROPRIETARY &
CONFIDENTIALPROPRIETARY & CONFIDENTIAL

All metrics data are written into single topic with multiple partitions (10 by default).
There’s a Kafka consumer per each partition. Consumes in micro batches (if data available).
At consuming MetricValues is translated into a CubeFact:

public class CubeFact { 
 private final long timestamp;  
 private final Map<String, String> dimensionValues;  
 private final Collection<Measurement> measurements;  
}

and written into a Cube.

Metrics
Processor

Kafka consumer

MetricsStore

Cube

Kafka consumer

MetricsStore

HBase

Cube

consume
MetricsTransport

(Kafka)

PROPRIETARY &
CONFIDENTIALPROPRIETARY & CONFIDENTIAL

Cube is configured with what to pre-aggregate (for faster querying). E.g.:
• by_namespace
• by_namespace*by_app
• by_namespace*by_app*by_flow*by_run*by_flowlet*by_instance

On average, one CubeFact is fanned out into 3 Facts:
public final class Fact { 
 private final long timestamp;  
 private final List<DimensionValue> dimensionValues;  
 private final Collection<Measurement> measurements;  
}

FactTable

Cube

FactTable

EntityTable

fact tablefact table

HBase

entity table

write

read

PROPRIETARY &
CONFIDENTIALPROPRIETARY & CONFIDENTIAL

Facts are written into multiple pre-aggregated time resolutions:
1sec, 1min, 1hr, “totals”.

Aggregated data for each time resolution is stored in its own
HBase table.

FactTable

Cube

FactTable

EntityTable

fact tablefact table

HBase

entity table

write

read

PROPRIETARY &
CONFIDENTIALPROPRIETARY & CONFIDENTIAL

metrics contexts = # CubeFacts
Facts fanned out = # CubeFacts * # aggregations
Facts written = # Facts * # resolutions
HBase records written = # of measurements in Facts written

Each emitted metric may result into a LOT of HBase records written!

Note: within each table within each aggregation row keys are monotonically increasing, i.e.
writes hit single region potentially creating a “hotspotting” issue.

Row key format:
<1-byte reserved for version>
<encoded agg group><time base>
<encoded dim1 value>...<encoded dimN value>
<encoded measure name>
Note: no need to put dim name in row key, as agg group
identifies dim list.

PROPRIETARY &
CONFIDENTIALPROPRIETARY & CONFIDENTIAL

Instrumentation!

PROPRIETARY &
CONFIDENTIALPROPRIETARY & CONFIDENTIAL

20 flowlet inst, 100 metrics -> 20 CubeFacts->
60 Facts -> 240 Facts written -> 24K increments

6K increments into each HBase table
2K increments into each aggregation

I.e. 2K writes hit same region with monotonically
increasing row keys.

I.e. 20 system metrics emitted by 500 flowlet
instances result in 10K Puts into same Region = ~limit

PROPRIETARY &
CONFIDENTIALPROPRIETARY & CONFIDENTIAL

Number of HBase records written reduces when metrics processor grabs bigger
batches of metrics data to process in single iteration

metrics contexts = # CubeFacts
Facts fanned out = # CubeFacts * # aggregations
Facts written = # Facts * # resolutions
HBase records written = # of measurements in Facts written

Row key format:
<1-byte reserved for version>
<encoded agg group><time base>
<encoded dim1 value>...<encoded dimN value>
<encoded measure name>
Note: no need to put dim name in row key, as agg group
identifies dim list.

PROPRIETARY &
CONFIDENTIALPROPRIETARY & CONFIDENTIAL

50 flowlet inst, 100 metrics -> 5K* Puts into
same Region (60K* total) results in 2-5 sec
delay in processing

200 flowlet inst, 100 metrics -> 20K* Puts into
same region (240K* total) results in 120 sec
delay in processing

PROPRIETARY &
CONFIDENTIALPROPRIETARY & CONFIDENTIAL

50 flowlet inst, 100 metrics -> 5K* Puts into
same Region (60K* total) results in 2-5 sec
delay in processing

200 flowlet inst, 100 metrics -> 20K* Puts into
same region (240K* total) results in 120 sec
delay in processing

But it keeps up!

PROPRIETARY &
CONFIDENTIALPROPRIETARY & CONFIDENTIAL

Verdict: lots of Opportunities!
• A single metrics processor may not be able to keep up (within

reasonable processing delay) even with hundreds of program
containers running on cluster.

• Cannot increase processing throughput by simply scaling out
metrics processors.

PROPRIETARY &
CONFIDENTIALPROPRIETARY & CONFIDENTIAL

Suggested Improvements
• No pre-split of Cube tables -> “slow start”

• pre-split per aggregation?
• Hotspotting within aggregation -> hard limit writes, esp. in “bigger aggregations”,

e.g. “across namespace”
• salt rowkeys within aggregations?
• + fix scalability issues?

• (?) Metric name in row key vs column key -> many “narrow Puts” vs few “wide
Puts”

• move measure name into column?
• should only speedup queries

• Reduce number of aggregations, esp. bigger ones
• may result in more complex querying: across aggregations

