CDAP Metrics Perf Explained

Problem

e Understanding metrics system performance is required for
successful production experience of CDAP
e (Customers already had problems with metrics system
performance
e [nability of processing to keep up with emitting makes operating
CDAP a “flying blind” experience
e |nability to scale out metrics processing makes impossible to
get back from “flying blind” to normal operations

c PROPRIETARY & CONFIDENTIAL

CDAP Metrics Overview: Data Flow

T T T T T T T T
MetricsTransport I . CDAP s built-in |
(Kafka) ,> consume : Metrics | Metrics System !

Ve B Kafka consumer Processor !

| |
| |
_ : MetricsStore |
publish FileSystem I :
l Cube !
Nk !
|
MetricsContext -‘ : i
. I : !
. |

[emi I Cube i
a thing : . :
that emits metrics | MetricsStore !

' .
| MetricsHandler Mg’:}rlecgs/ |
process that : . Service :
runs a thing ! i

HTTP
4
Router }

c PROPRIETARY & CONFIDENTIAL

CDAP Metrics Overview: Cube

. Row key format:

E<1—byte reserved for version>

' <encoded agg group><time base> :
 <encoded diml value>...<encoded dimN value> :
. <encoded measure name> :
: Note: no need to put dim name in row key, as agg group

. identifies dim list.

...

write /’—HT\

FactTable fact table |
| read _prl
Cube
T entity table
EntityTable
\ /

c PROPRIETARY & CONFIDENTIAL

Metrics System Analysis goals: | Understand costoverhead:
* cost - using extra resources, separate setup, etc.;
overhe: on the running programs, data
processing and such.
Sometimes the border between two is biurred.

I_] Understand limits
e
O V e r e a d They run mosty in YARN ‘Assess scalabilty

rocess that .
funs a thing Aggregates emitted metrics in-

. e o ottre
- Dsse metion cubctin 9, R T
Overhead Gurerly ot vy et atring
ey , s :
cassos lockip n 8 Mep on evey H - ‘A single “thing that emits mefrics™ ‘Additional X
emit of metric (serial to processing) 2 may use multiple contexts :cost Additional
. cost
b) o s s |] i
worth of for d VO that Kafka
pecmc context iblish ‘stores on filesystem is important to You can have multiple instances of these:
g L understand to size Kafka Gluster : configurod as system service, They run in YARN
i o st otk st -
; i5the o of dta ent to Katia? ericsTranspo .
Size/rate is needed to size Kafka 1 (Kafka) Cube “fans out” records based on
il o
Ao I e e ot
B | CDAP's built-in | e
. i : 5] v] | -
cost n Processor . is pre-aggregated on client, we also write min & hour & total
YARN fomaton & resde o K conumer : P ot e iy
e e
— . W
(I ———— .
Cube 5 i to understand metrics cost/overhead ; Overhead
— L
oS —
il eri ey HBase [~ The size of data is important to know to
s S Tty pe— e o s e
results in uneven distribution :(Cube =5 e
M— - g —
: Metics ot flushed to HBase ye) or metrics data pipe
Number of consumers in each H MetricsHandler Que (Kafka). All reads hit HBase. .
mavics ocessordepandsonhow | | oy . Tt alsomeans aleae nrsa doly i T
many pan-lwens it "won” during H 1 - visibility of metrics data.
leader electio . T T
: - ;
p eT—r—— o
No caching, apart from metricftag ©~ g effect of “bad queries”, but it is st pretty Overhead
Nocachng st i T] e et St .
e d g Comatyony : Sl ol e
oLl :
o s Yo i
Would compromise cache? to YARN containers of these: configured as T

those, the
component s installed separately : run on YARN

— means “network call”

Overhead

Cube (zoomed)

e, uses Pt or “IncrementPut” (eadiess
increment) when updating gauge and counter
respective Row key format: Within agg group, facts ordered by
Uses in-memory client buffer of HTable: reduces RF Pt ik - £ “gg 3 it o te l
#, but has chance to loose data in case of failures. B time will result in monotonically

: increasing keys, which wil result n
pospotng s, A Tl

<encoded measure helps to spread writes a bit, but mx
Note: no need to put dim name in row key, as agg group. not be enough
identifies dim it

‘Timeseries table, one per each
time resolution (including “all
time totals”). Each uses its own
table in HBa:

No pre-split on table
creati

! with single region.

X table
EntityTable : £ Row key format?

Maps metric name, dim name e 3 y proi can, 1
and value, aggregation rame o ;- ; Which cache type? . using FuzzyRowFiter; fiters and aggregates. - @i
used when on lent. oy
Conacing ke fot " | This data over network
table. Helps to reduce row key
alot

Scan is sequential given the row format, ie. single:
Cube query hits one RS at a time, no paralleism

PROPRIETARY & CONFIDENTIAL

Detalils (continues on next slides)

MetricsTransport
(Kafka) : : : .
X A thing emits MetricValues into Kafka:
publish public class MetricValues {
private final long timestamp;
private final Map<String, String> tags;
MetricsContext] private final Collection<MetricValue> metrics;
: ¥
Lremit
a’Fhing _
that emits metrics Every second, a thing emits
Srocess that <# of MetricsContext> MetricValues.
runs a thing

c PROPRIETARY & CONFIDENTIAL

MetricsTransport Metrics
(Kaka) V% consume —Pp-| Kafka consumer | Processor
MetricsStore ||
Cube |
. — >
\ HBase

All metrics data are written into single topic with multiple partitions (10 by default).

There’s a Kafka consumer per each partition. Consumes in micro batches (if data available).
At consuming MetricValues is translated into a CubeFact:
public class CubeFact {

private final long timestamp;

private final Map<String, String> dimensionValues;
private final Collection<Measurement> measurements;

}
and written into a Cube.

c PROPRIETARY & CONFIDENTIAL

wite ¢ HBase

FactTable fact table
> read i
Cube
. entity table
EntityTable
o B

Cube is configured with what to pre-aggregate (for faster querying). E.g.:
* by namespace

* by namespace*by_app

* by namespace*by app*by_ flow*by run*by flowlet*by instance

On average, one CubeFact is fanned out into 3 Facts:

public final class Fact {
private final long timestamp;
private final List<DimensionValue> dimensionValues;
private final Collection<Measurement> measurements;

by

c PROPRIETARY & CONFIDENTIAL

T lRaen N

FactTable fact table
> read i
Cube
. entity table
EntityTable
o B

Facts are written into multiple pre-aggregated time resolutions:
1sec, 1min, 1hr, “totals”.

Aggregated data for each time resolution is stored in its own
HBase table.

c PROPRIETARY & CONFIDENTIAL

. Row key format:

, <l-byte reserved for version>

. <encoded agg group><time base> .
: <encoded diml value>...<encoded dimN value> :
: <encoded measure name> :

+ Note: no need to put dim name in row key, as agg group

. identifies dim list.

metrics contexts = # CubeFacts

Facts fanned out = # CubeFacts * # aggregations

Facts written = # Facts * # resolutions

HBase records written = # of measurements in Facts written

Each emitted metric may result into a LOT of HBase records written!

Note: within each table within each aggregation row keys are monotonically increasing, i.e.
writes hit single region potentially creating a “hotspotting” issue.

c PROPRIETARY & CONFIDENTIAL

Instrumentation!

® 0@ Ccow x | Qeoar % ')Al Applications x
« € [perf-reactort.sic1.

o
Sptom -Maes - Dasbowaa | < movia proces o
e Stoppotng
. . s
= ped 5
i o &
i
@ o =
00 0. 400000
2 &=
500 26000 300000
2 = E
E e &=
] 2
£ = =
2 I = &=
S o T e TS S oo Sanm o o i o At i o
A O — ittt -
- -
140000 fosato 1200000
o
o e
— o poie
pd -
b P
40000 200000 405000
o P o
o i S o Han S S 220 S e S S 20 et e
PR E— L. (R R—
00 “ s
o S :
= =
o e o
- 2 -
2 e
o T -
= =
- E e
S o Ao e Hho S “hinm zone o N S peasn Lo

ase00pm T1200pm
W system faciTable.put count M system.metrics. emitted.count M system metrics.process.count

ot
160000

s2000pm s3300pm s4s000m ase00pm Tizg0pm s2000pm Gdss0pm Sdsoopn Gse0pm Tzo0pm s2000pm Sas0pm Sdstopm

Gae0pm Tiza0pm

PROPRIETARY & CONFIDENTIAL

20 flowlet inst, 100 metrics -> 20 CubeFacts->
60 Facts -> 240 Facts written -> 24K increments

6K increments into each HBase table
2K increments into each aggregation

l.e. 2K writes hit same region with monotonically
increasing row keys.

l.e. 20 system metrics emitted by 500 flowlet
instances result in 10K Puts into same Region = ~limit

. Row key format:

E<1—byte reserved for version>

 <encoded agg group><time base>

! <encoded diml value>...<encoded dimN value> !
: <encoded measure name> :
: Note: no need to put dim name in row key, as agg group

. identifies dim list.

Number of HBase records written reduces when metrics processor grabs bigger
batches of metrics data to process in single iteration

metrics contexts = # CubeFacts

Facts fanned out = # CubeFacts * # aggregations

Facts written = # Facts * # resolutions

HBase records written = # of measurements in Facts written

c PROPRIETARY & CONFIDENTIAL

50 flowlet inst, 100 metrics -> 5K* Puts into
same Region (60K* total) results in 2-5 sec
delay in processing

200 flowlet inst, 100 metrics -> 20K* Puts into
same region (240K* total) results in 120 sec
delay in processing

50 flowlet inst, 100 metrics -> 5K* Puts into
same Region (60K* total) results in 2-5 sec
delay in processing

200 flowlet inst, 100 metrics -> 20K* Puts into
same region (240K* total) results in 120 sec
delay in processing

But it keeps up!

Verdict: lots of Opportunities!

* A single metrics processor may not be able to keep up (within
reasonable processing delay) even with hundreds of program
containers running on cluster.

« Cannot increase processing throughput by simply scaling out
metrics processors.

c PROPRIETARY & CONFIDENTIAL

Suggested Improvements

No pre-split of Cube tables -> “slow start”

* pre-split per aggregation?
Hotspotting within aggregation -> hard limit writes, esp. in “bigger aggregations”,
e.g. “across namespace’

« salt rowkeys within aggregations?

* + fix scalability issues?
(?) Metric name in row key vs column key -> many “narrow Puts” vs few “wide
Puts”

* move measure name into column?

 should only speedup queries
Reduce number of aggregations, esp. bigger ones

* may result in more complex querying: across aggregations

c PROPRIETARY & CONFIDENTIAL

